Vessel and blood specification override cardiac potential in anterior mesoderm.
نویسندگان
چکیده
Organ progenitors arise within organ fields, embryonic territories that are larger than the regions required for organ formation. Little is known about the regulatory pathways that define organ field boundaries and thereby limit organ size. Here we identify a mechanism for restricting heart size through confinement of the developmental potential of the heart field. Via fate mapping in zebrafish, we locate cardiac progenitors within hand2-expressing mesoderm and demonstrate that hand2 potentiates cardiac differentiation within this region. Beyond the rostral boundary of hand2 expression, we find progenitors of vessel and blood lineages. In embryos deficient in vessel and blood specification, rostral mesoderm undergoes a fate transformation and generates ectopic cardiomyocytes. Therefore, induction of vessel and blood specification represses cardiac specification and delimits the capacity of the heart field. This regulatory relationship between cardiovascular pathways suggests strategies for directing progenitor cell differentiation to facilitate cardiac regeneration.
منابع مشابه
ER71 specifies Flk-1+ hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling.
Two distinct types of Flk-1(+) mesoderm, hemangiogenic and cardiogenic, are thought to contribute to blood, vessel, and cardiac cell lineages. However, our understanding of how Flk-1(+) mesoderm is specified is currently limited. In the present study, we investigated whether ER71, an Ets transcription factor essential for hematopoietic and endothelial cell lineage development, could modulate th...
متن کاملHEMATOPOIESIS AND STEM CELLS ER71 specifies Flk-1 hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling
Two distinct types of Flk-1 mesoderm, hemangiogenic and cardiogenic, are thought to contribute to blood, vessel, and cardiac cell lineages. However, our understanding of how Flk-1 mesoderm is specified is currently limited. In the present study, we investigated whether ER71, an Ets transcription factor essential for hematopoietic and endothelial cell lineage development, could modulate the hema...
متن کاملInhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes
During vertebrate development, mesodermal fate choices are regulated by interactions between morphogens such as activin/nodal, BMPs and Wnt/β-catenin that define anterior-posterior patterning and specify downstream derivatives including cardiomyocyte, endothelial and hematopoietic cells. We used human embryonic stem cells to explore how these pathways control mesodermal fate choices in vitro. V...
متن کاملThe Drosophila homolog of vertebrate Islet1 is a key component in early cardiogenesis.
In mouse, the LIM-homeodomain transcription factor Islet1 (Isl1) has been shown to demarcate a separate cardiac cell population that is essential for the formation of the right ventricle and the outflow tract of the heart. Whether Isl1 plays a crucial role in the early regulatory network of transcription factors that establishes a cardiac fate in mesodermal cells has not been fully resolved. We...
متن کاملOrigin, Specification, and Plasticity of the Great Vessels of the Heart
The pharyngeal arch arteries (PAAs) are a series of paired embryonic blood vessels that give rise to several major arteries that connect directly to the heart. During development, the PAAs emerge from nkx2.5-expressing mesodermal cells and connect the dorsal head vasculature to the outflow tract of the heart. Despite their central role in establishing the circulatory system, the embryonic origi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental cell
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2007